

Mycroft-core technical documentation

Mycroft Skills API

Reference for use during Skill creation

Contents:

	mycroft package

	mycroft.skills
	MycroftSkill class - Base class for all Mycroft skills

	CommonIoTSkill class

	CommonPlaySkill class

	CommonQuerySkill class

	FallbackSkill class

	AudioService class

	intent_handler decorator

	intent_file_handler decorator

	adds_context decorator

	removes_context decorator

	mycroft.audio
	mycroft.audio

	mycroft.filesystem
	mycroft.filesystem

	mycroft.util
	mycroft.util package
	LOG

	play_wav

	play_mp3

	play_ogg

	resolve_resource_file

	get_cache_directory

	mycroft.util.log

	mycroft.util.parse

	mycroft.util.format

	mycroft.util.time

Mycroft plugin API

Reference for use during Plugin creation

Contents:

	Mycroft plugins
	TTS - Base for TTS plugins

	STT - base for STT plugins

	HotWordEngine - Base for Hotword engine plugins

	AudioBackend - Base for audioservice backend plugins

mycroft package

mycroft.skills

MycroftSkill class - Base class for all Mycroft skills

	
class mycroft.MycroftSkill(name=None, bus=None, use_settings=True)

	Base class for mycroft skills providing common behaviour and parameters
to all Skill implementations.

For information on how to get started with creating mycroft skills see
https://mycroft.ai/documentation/skills/introduction-developing-skills/

	Parameters

	
	name (str) – skill name

	bus (MycroftWebsocketClient) – Optional bus connection

	use_settings (bool) – Set to false to not use skill settings at all

	
acknowledge()

	Acknowledge a successful request.

This method plays a sound to acknowledge a request that does not
require a verbal response. This is intended to provide simple feedback
to the user that their request was handled successfully.

	
add_event(name, handler, handler_info=None, once=False)

	Create event handler for executing intent or other event.

	Parameters

	
	name (string) – IntentParser name

	handler (func) – Method to call

	handler_info (string) – Base message when reporting skill event
handler status on messagebus.

	once (bool, optional) – Event handler will be removed after it has
been run once.

	
ask_selection(options, dialog='', data=None, min_conf=0.65, numeric=False)

	Read options, ask dialog question and wait for an answer.

This automatically deals with fuzzy matching and selection by number
e.g.

	“first option”

	“last option”

	“second option”

	“option number four”

	Parameters

	
	options (list) – list of options to present user

	dialog (str) – a dialog id or string to read AFTER all options

	data (dict) – Data used to render the dialog

	min_conf (float) – minimum confidence for fuzzy match, if not
reached return None

	numeric (bool) – speak options as a numeric menu

	Returns

	list element selected by user, or None

	Return type

	string

	
ask_yesno(prompt, data=None)

	Read prompt and wait for a yes/no answer

This automatically deals with translation and common variants,
such as ‘yeah’, ‘sure’, etc.

	Parameters

	
	prompt (str) – a dialog id or string to read

	data (dict) – response data

	Returns

	
	‘yes’, ‘no’ or whatever the user response if not
	one of those, including None

	Return type

	string

	
bind(bus)

	Register messagebus emitter with skill.

	Parameters

	bus – Mycroft messagebus connection

	
cancel_all_repeating_events()

	Cancel any repeating events started by the skill.

	
cancel_scheduled_event(name)

	Cancel a pending event. The event will no longer be scheduled
to be executed

	Parameters

	name (str) – reference name of event (from original scheduling)

	
config_core

	Mycroft global configuration. (dict)

	
converse(message=None)

	Handle conversation.

This method gets a peek at utterances before the normal intent
handling process after a skill has been invoked once.

To use, override the converse() method and return True to
indicate that the utterance has been handled.

utterances and lang are depreciated

	Parameters

	message – a message object containing a message type with an
optional JSON data packet

	Returns

	True if an utterance was handled, otherwise False

	Return type

	bool

	
default_shutdown()

	Parent function called internally to shut down everything.

Shuts down known entities and calls skill specific shutdown method.

	
disable_intent(intent_name)

	Disable a registered intent if it belongs to this skill.

	Parameters

	intent_name (string) – name of the intent to be disabled

	Returns

	True if disabled, False if it wasn’t registered

	Return type

	bool

	
enable_intent(intent_name)

	(Re)Enable a registered intent if it belongs to this skill.

	Parameters

	intent_name – name of the intent to be enabled

	Returns

	True if enabled, False if it wasn’t registered

	Return type

	bool

	
file_system

	Filesystem access to skill specific folder.
See mycroft.filesystem for details.

	
find_resource(res_name, res_dirname=None)

	Find a resource file.

Searches for the given filename using this scheme:

	Search the resource lang directory:

<skill>/<res_dirname>/<lang>/<res_name>

	Search the resource directory:

<skill>/<res_dirname>/<res_name>

	Search the locale lang directory or other subdirectory:

<skill>/locale/<lang>/<res_name> or

<skill>/locale/<lang>/…/<res_name>

	Parameters

	
	res_name (string) – The resource name to be found

	res_dirname (string, optional) – A skill resource directory, such
‘dialog’, ‘vocab’, ‘regex’ or ‘ui’.
Defaults to None.

	Returns

	The full path to the resource file or None if not found

	Return type

	string

	
get_intro_message()

	Get a message to speak on first load of the skill.

Useful for post-install setup instructions.

	Returns

	message that will be spoken to the user

	Return type

	str

	
get_response(dialog='', data=None, validator=None, on_fail=None, num_retries=- 1)

	Get response from user.

If a dialog is supplied it is spoken, followed immediately by listening
for a user response. If the dialog is omitted listening is started
directly.

The response can optionally be validated before returning.

Example:

color = self.get_response('ask.favorite.color')

	Parameters

	
	dialog (str) – Optional dialog to speak to the user

	data (dict) – Data used to render the dialog

	validator (any) – Function with following signature:

def validator(utterance):
 return utterance != "red"

	on_fail (any) – Dialog or function returning literal string to speak on
invalid input. For example:

def on_fail(utterance):
 return "nobody likes the color red, pick another"

	num_retries (int) – Times to ask user for input, -1 for infinite
NOTE: User can not respond and timeout or say “cancel” to stop

	Returns

	User’s reply or None if timed out or canceled

	Return type

	str

	
get_scheduled_event_status(name)

	Get scheduled event data and return the amount of time left

	Parameters

	name (str) – reference name of event (from original scheduling)

	Returns

	the time left in seconds

	Return type

	int

	Raises

	Exception – Raised if event is not found

	
handle_disable_intent(message)

	Listener to disable a registered intent if it belongs to this skill.

	
handle_enable_intent(message)

	Listener to enable a registered intent if it belongs to this skill.

	
handle_remove_cross_context(message)

	Remove global context from intent service.

	
handle_set_cross_context(message)

	Add global context to intent service.

	
handle_settings_change(message)

	Update settings if the remote settings changes apply to this skill.

The skill settings downloader uses a single API call to retrieve the
settings for all skills. This is done to limit the number API calls.
A “mycroft.skills.settings.changed” event is emitted for each skill
that had their settings changed. Only update this skill’s settings
if its remote settings were among those changed

	
initialize()

	Perform any final setup needed for the skill.

Invoked after the skill is fully constructed and registered with the
system.

	
property lang

	Get the configured language.

	
load_data_files(root_directory=None)

	Called by the skill loader to load intents, dialogs, etc.

	Parameters

	root_directory (str) – root folder to use when loading files.

	
load_regex_files(root_directory)

	Load regex files found under the skill directory.

	Parameters

	root_directory (str) – root folder to use when loading files

	
load_vocab_files(root_directory)

	Load vocab files found under root_directory.

	Parameters

	root_directory (str) – root folder to use when loading files

	
property location

	Get the JSON data struction holding location information.

	
property location_pretty

	Get a more ‘human’ version of the location as a string.

	
property location_timezone

	Get the timezone code, such as ‘America/Los_Angeles’

	
log

	Skill logger instance

	
make_active()

	Bump skill to active_skill list in intent_service.

This enables converse method to be called even without skill being
used in last 5 minutes.

	
register_entity_file(entity_file)

	Register an Entity file with the intent service.

An Entity file lists the exact values that an entity can hold.
For example:

=== ask.day.intent ===
Is it {weekend}?

=== weekend.entity ===
Saturday
Sunday

	Parameters

	entity_file (string) – name of file that contains examples of an
entity. Must end with ‘.entity’

	
register_intent(intent_parser, handler)

	Register an Intent with the intent service.

	Parameters

	
	intent_parser – Intent, IntentBuilder object or padatious intent
file to parse utterance for the handler.

	handler (func) – function to register with intent

	
register_intent_file(intent_file, handler)

	Register an Intent file with the intent service.

For example:

=== food.order.intent ===
Order some {food}.
Order some {food} from {place}.
I’m hungry.
Grab some {food} from {place}.

Optionally, you can also use <register_entity_file>
to specify some examples of {food} and {place}

In addition, instead of writing out multiple variations
of the same sentence you can write:

=== food.order.intent ===
(Order | Grab) some {food} (from {place} |).
I’m hungry.

	Parameters

	
	intent_file – name of file that contains example queries
that should activate the intent. Must end with
‘.intent’

	handler – function to register with intent

	
register_regex(regex_str)

	Register a new regex.
:param regex_str: Regex string

	
register_resting_screen()

	Registers resting screen from the resting_screen_handler decorator.

This only allows one screen and if two is registered only one
will be used.

	
register_vocabulary(entity, entity_type)

	Register a word to a keyword

	Parameters

	
	entity – word to register

	entity_type – Intent handler entity to tie the word to

	
reload_skill

	allow reloading (default True)

	
remove_context(context)

	Remove a keyword from the context manager.

	
remove_cross_skill_context(context)

	Tell all skills to remove a keyword from the context manager.

	
remove_event(name)

	Removes an event from bus emitter and events list.

	Parameters

	name (string) – Name of Intent or Scheduler Event

	Returns

	True if found and removed, False if not found

	Return type

	bool

	
report_metric(name, data)

	Report a skill metric to the Mycroft servers.

	Parameters

	
	name (str) – Name of metric. Must use only letters and hyphens

	data (dict) – JSON dictionary to report. Must be valid JSON

	
root_dir

	Member variable containing the absolute path of the skill’s root
directory. E.g. /opt/mycroft/skills/my-skill.me/

	
schedule_event(handler, when, data=None, name=None, context=None)

	Schedule a single-shot event.

	Parameters

	
	handler – method to be called

	when (datetime/int/float) – datetime (in system timezone) or
number of seconds in the future when the
handler should be called

	data (dict, optional) – data to send when the handler is called

	name (str, optional) – reference name
NOTE: This will not warn or replace a
previously scheduled event of the same
name.

	context (dict, optional) – context (dict, optional): message
context to send when the handler
is called

	
schedule_repeating_event(handler, when, frequency, data=None, name=None, context=None)

	Schedule a repeating event.

	Parameters

	
	handler – method to be called

	when (datetime) – time (in system timezone) for first
calling the handler, or None to
initially trigger <frequency> seconds
from now

	frequency (float/int) – time in seconds between calls

	data (dict, optional) – data to send when the handler is called

	name (str, optional) – reference name, must be unique

	context (dict, optional) – context (dict, optional): message
context to send when the handler
is called

	
send_email(title, body)

	Send an email to the registered user’s email.

	Parameters

	
	title (str) – Title of email

	body (str) – HTML body of email. This supports
simple HTML like bold and italics

	
set_context(context, word='', origin='')

	Add context to intent service

	Parameters

	
	context – Keyword

	word – word connected to keyword

	origin – origin of context

	
set_cross_skill_context(context, word='')

	Tell all skills to add a context to intent service

	Parameters

	
	context – Keyword

	word – word connected to keyword

	
settings_change_callback

	Set to register a callback method that will be called every time
the skills settings are updated. The referenced method should
include any logic needed to handle the updated settings.

	
shutdown()

	Optional shutdown proceedure implemented by subclass.

This method is intended to be called during the skill process
termination. The skill implementation must shutdown all processes and
operations in execution.

	
speak(utterance, expect_response=False, wait=False, meta=None)

	Speak a sentence.

	Parameters

	
	utterance (str) – sentence mycroft should speak

	expect_response (bool) – set to True if Mycroft should listen
for a response immediately after
speaking the utterance.

	wait (bool) – set to True to block while the text
is being spoken.

	meta – Information of what built the sentence.

	
speak_dialog(key, data=None, expect_response=False, wait=False)

	Speak a random sentence from a dialog file.

	Parameters

	
	key (str) – dialog file key (e.g. “hello” to speak from the file
“locale/en-us/hello.dialog”)

	data (dict) – information used to populate sentence

	expect_response (bool) – set to True if Mycroft should listen
for a response immediately after
speaking the utterance.

	wait (bool) – set to True to block while the text
is being spoken.

	
stop()

	Optional method implemented by subclass.

	
translate(text, data=None)

	Load a translatable single string resource

The string is loaded from a file in the skill’s dialog subdirectory
‘dialog/<lang>/<text>.dialog’

The string is randomly chosen from the file and rendered, replacing
mustache placeholders with values found in the data dictionary.

	Parameters

	
	text (str) – The base filename (no extension needed)

	data (dict, optional) – a JSON dictionary

	Returns

	A randomly chosen string from the file

	Return type

	str

	
translate_list(list_name, data=None)

	Load a list of translatable string resources

The strings are loaded from a list file in the skill’s dialog
subdirectory.
‘dialog/<lang>/<list_name>.list’

The strings are loaded and rendered, replacing mustache placeholders
with values found in the data dictionary.

	Parameters

	
	list_name (str) – The base filename (no extension needed)

	data (dict, optional) – a JSON dictionary

	Returns

	
	The loaded list of strings with items in consistent
	positions regardless of the language.

	Return type

	list of str

	
translate_namedvalues(name, delim=',')

	Load translation dict containing names and values.

This loads a simple CSV from the ‘dialog’ folders.
The name is the first list item, the value is the
second. Lines prefixed with # or // get ignored

	Parameters

	
	name (str) – name of the .value file, no extension needed

	delim (char) – delimiter character used, default is ‘,’

	Returns

	name and value dictionary, or empty dict if load fails

	Return type

	dict

	
translate_template(template_name, data=None)

	Load a translatable template.

The strings are loaded from a template file in the skill’s dialog
subdirectory.
‘dialog/<lang>/<template_name>.template’

The strings are loaded and rendered, replacing mustache placeholders
with values found in the data dictionary.

	Parameters

	
	template_name (str) – The base filename (no extension needed)

	data (dict, optional) – a JSON dictionary

	Returns

	The loaded template file

	Return type

	list of str

	
update_scheduled_event(name, data=None)

	Change data of event.

	Parameters

	
	name (str) – reference name of event (from original scheduling)

	data (dict) – event data

	
voc_match(utt, voc_filename, lang=None, exact=False)

	Determine if the given utterance contains the vocabulary provided.

By default the method checks if the utterance contains the given vocab
thereby allowing the user to say things like “yes, please” and still
match against “Yes.voc” containing only “yes”. An exact match can be
requested.

The method first checks in the current Skill’s .voc files and secondly
in the “res/text” folder of mycroft-core. The result is cached to
avoid hitting the disk each time the method is called.

	Parameters

	
	utt (str) – Utterance to be tested

	voc_filename (str) – Name of vocabulary file (e.g. ‘yes’ for
‘res/text/en-us/yes.voc’)

	lang (str) – Language code, defaults to self.long

	exact (bool) – Whether the vocab must exactly match the utterance

	Returns

	True if the utterance has the given vocabulary it

	Return type

	bool

CommonIoTSkill class

	
class mycroft.skills.common_iot_skill.CommonIoTSkill(name=None, bus=None, use_settings=True)

	Bases: mycroft.skills.mycroft_skill.mycroft_skill.MycroftSkill, abc.ABC

Skills that want to work with the CommonIoT system should
extend this class. Subclasses will be expected to implement
two methods, can_handle and run_request. See the
documentation for those functions for more details on how
they are expected to behave.

Subclasses may also register their own entities and scenes.
See the register_entities and register_scenes methods for
details.

This class works in conjunction with a controller skill.
The controller registers vocabulary and intents to capture
IoT related requests. It then emits messages on the messagebus
that will be picked up by all skills that extend this class.
Each skill will have the opportunity to declare whether or not
it can handle the given request. Skills that acknowledge that
they are capable of handling the request will be considered
candidates, and after a short timeout, a winner, or winners,
will be chosen. With this setup, a user can have several IoT
systems, and control them all without worry that skills will
step on each other.

	
bind(bus)

	Overrides MycroftSkill.bind.

This is called automatically during setup, and
need not otherwise be used.

Subclasses that override this method must call this
via super in their implementation.

	Parameters

	bus –

	
abstract can_handle(request: mycroft.skills.common_iot_skill.IoTRequest)

	Determine if an IoTRequest can be handled by this skill.

This method must be implemented by all subclasses.

An IoTRequest contains several properties (see the
documentation for that class). This method should return
True if and only if this skill can take the appropriate
‘action’ when considering all other properties
of the request. In other words, a partial match, one in which
any piece of the IoTRequest is not known to this skill,
and is not None, this should return (False, None).

	Parameters

	request – IoTRequest

	Returns: (boolean, dict)
	True if and only if this skill knows about all the
properties set on the IoTRequest, and a dict containing
callback_data. If this skill is chosen to handle the
request, this dict will be supplied to run_request.

Note that the dictionary will be sent over the bus, and thus
must be JSON serializable.

	
get_entities()

	Get a list of custom entities.

This is intended to be overridden by subclasses, though it
it not required (the default implementation will return an
empty list).

The strings returned by this function will be registered
as ENTITY values with the intent parser. Skills should provide
group names, user aliases for specific devices, or anything
else that might represent a THING or a set of THINGs, e.g.
‘bedroom’, ‘lamp’, ‘front door.’ This allows commands that
don’t explicitly include a THING to still be handled, e.g.
“bedroom off” as opposed to “bedroom lights off.”

	
get_scenes()

	Get a list of custom scenes.

This method is intended to be overridden by subclasses, though
it is not required. The strings returned by this function will
be registered as SCENE values with the intent parser. Skills
should provide user defined scene names that they are aware of
and capable of handling, e.g. “relax,” “movie time,” etc.

	
register_entities_and_scenes()

	This method will register this skill’s scenes and entities.

This should be called in the skill’s initialize method,
at some point after get_entities and get_scenes can
be expected to return correct results.

	
abstract run_request(request: mycroft.skills.common_iot_skill.IoTRequest, callback_data: dict)

	Handle an IoT Request.

All subclasses must implement this method.

When this skill is chosen as a winner, this function will be called.
It will be passed an IoTRequest equivalent to the one that was
supplied to can_handle, as well as the callback_data returned by
can_handle.

	Parameters

	
	request – IoTRequest

	callback_data – dict

	
speak(utterance, *args, **kwargs)

	Speak a sentence.

	Parameters

	
	utterance (str) – sentence mycroft should speak

	expect_response (bool) – set to True if Mycroft should listen
for a response immediately after
speaking the utterance.

	wait (bool) – set to True to block while the text
is being spoken.

	meta – Information of what built the sentence.

	
property supported_request_version: mycroft.skills.common_iot_skill.IoTRequestVersion

	Get the supported IoTRequestVersion

By default, this returns IoTRequestVersion.V1. Subclasses
should override this to indicate higher levels of support.

The documentation for IoTRequestVersion provides a reference
indicating which fields are included in each version. Note
that you should always take the latest, and account for all
request fields.

CommonPlaySkill class

	
class mycroft.skills.common_play_skill.CommonPlaySkill(name=None, bus=None)

	Bases: mycroft.skills.mycroft_skill.mycroft_skill.MycroftSkill, abc.ABC

To integrate with the common play infrastructure of Mycroft
skills should use this base class and override the two methods
CPS_match_query_phrase (for checking if the skill can play the
utterance) and CPS_start for launching the media.

The class makes the skill available to queries from the
mycroft-playback-control skill and no special vocab for starting playback
is needed.

	
CPS_extend_timeout(timeout=5)

	Request Common Play Framework to wait another {timeout} seconds
for an answer from this skill.

	Parameters

	timeout (int) – Number of seconds

	
abstract CPS_match_query_phrase(phrase)

	Analyze phrase to see if it is a play-able phrase with this skill.

	Parameters

	phrase (str) – User phrase uttered after “Play”, e.g. “some music”

	Returns

	
	Tuple containing
	a string with the appropriate matching phrase, the PlayMatch
type, and optionally data to return in the callback if the
match is selected.

	Return type

	(match, CPSMatchLevel[, callback_data]) or None

	
CPS_play(*args, **kwargs)

	Begin playback of a media file or stream

	Normally this method will be invoked with somthing like:
	self.CPS_play(url)

	Advanced use can also include keyword arguments, such as:
	self.CPS_play(url, repeat=True)

	Parameters

	method (same as the Audioservice.play) –

	
CPS_send_status(artist='', track='', album='', image='', uri='', track_length=None, elapsed_time=None, playlist_position=None, status=CPSTrackStatus.DISAMBIGUATION, **kwargs)

	Inform system of playback status.

If a skill is handling playback and wants the playback control to be
aware of it’s current status it can emit this message indicating that
it’s performing playback and can provide some standard info.

All parameters are optional so any can be left out. Also if extra
non-standard parameters are added, they too will be sent in the message
data.

	Parameters

	
	artist (str) – Current track artist

	track (str) – Track name

	album (str) – Album title

	image (str) – url for image to show

	uri (str) – uri for track

	track_length (float) – track length in seconds

	elapsed_time (float) – current offset into track in seconds

	playlist_position (int) – Position in playlist of current track

	
CPS_send_tracklist(tracklist)

	Inform system of playlist track info.

Provides track data for playlist

	Parameters

	tracklist (list/dict) – Tracklist data

	
abstract CPS_start(phrase, data)

	Begin playing whatever is specified in ‘phrase’

	Parameters

	
	phrase (str) – User phrase uttered after “Play”, e.g. “some music”

	data (dict) – Callback data specified in match_query_phrase()

	
bind(bus)

	Overrides the normal bind method.

Adds handlers for play:query and play:start messages allowing
interaction with the playback control skill.

This is called automatically during setup, and
need not otherwise be used.

	
stop()

	Stop anything playing on the audioservice.

CommonQuerySkill class

	
class mycroft.skills.common_query_skill.CommonQuerySkill(name=None, bus=None)

	Bases: mycroft.skills.mycroft_skill.mycroft_skill.MycroftSkill, abc.ABC

Question answering skills should be based on this class.

The skill author needs to implement CQS_match_query_phrase returning an
answer and can optionally implement CQS_action to perform additional
actions if the skill’s answer is selected.

This class works in conjunction with skill-query which collects
answers from several skills presenting the best one available.

	
CQS_action(phrase, data)

	Take additional action IF the skill is selected.

The speech is handled by the common query but if the chosen skill
wants to display media, set a context or prepare for sending
information info over e-mail this can be implemented here.

	Parameters

	
	phrase (str) – User phrase uttered after “Play”, e.g. “some music”

	data (dict) – Callback data specified in match_query_phrase()

	
abstract CQS_match_query_phrase(phrase)

	Analyze phrase to see if it is a play-able phrase with this skill.

Needs to be implemented by the skill.

	Parameters

	phrase (str) – User phrase, “What is an aardwark”

	Returns

	
	Tuple containing
	a string with the appropriate matching phrase, the PlayMatch
type, and optionally data to return in the callback if the
match is selected.

	Return type

	(match, CQSMatchLevel[, callback_data]) or None

	
bind(bus)

	Overrides the default bind method of MycroftSkill.

This registers messagebus handlers for the skill during startup
but is nothing the skill author needs to consider.

	
remove_noise(phrase)

	remove noise to produce essence of question

FallbackSkill class

	
class mycroft.FallbackSkill(name=None, bus=None, use_settings=True)

	Bases: mycroft.skills.mycroft_skill.mycroft_skill.MycroftSkill

Fallbacks come into play when no skill matches an Adapt or closely with
a Padatious intent. All Fallback skills work together to give them a
view of the user’s utterance. Fallback handlers are called in an order
determined the priority provided when the the handler is registered.

	Priority

	Who?

	Purpose

	1-4

	RESERVED

	Unused for now, slot for pre-Padatious if needed

	5

	MYCROFT

	Padatious near match (conf > 0.8)

	6-88

	USER

	General

	89

	MYCROFT

	Padatious loose match (conf > 0.5)

	90-99

	USER

	Uncaught intents

	100+

	MYCROFT

	Fallback Unknown or other future use

Handlers with the numerically lowest priority are invoked first.
Multiple fallbacks can exist at the same priority, but no order is
guaranteed.

A Fallback can either observe or consume an utterance. A consumed
utterance will not be see by any other Fallback handlers.

	
default_shutdown()

	Remove all registered handlers and perform skill shutdown.

	
classmethod make_intent_failure_handler(bus)

	Goes through all fallback handlers until one returns True

	
register_fallback(handler, priority)

	Register a fallback with the list of fallback handlers and with the
list of handlers registered by this instance

	
classmethod remove_fallback(handler_to_del)

	Remove a fallback handler.

	Parameters

	handler_to_del – reference to handler

	Returns

	(bool) True if at least one handler was removed, otherwise False

	
remove_instance_handlers()

	Remove all fallback handlers registered by the fallback skill.

AudioService class

	
class mycroft.skills.audioservice.AudioService(bus)

	Bases: object

AudioService class for interacting with the audio subsystem

	Parameters

	bus – Mycroft messagebus connection

	
available_backends()

	Return available audio backends.

	Returns

	dict with backend names as keys

	
property is_playing

	True if the audioservice is playing, else False.

	
next()

	Change to next track.

	
pause()

	Pause playback.

	
play(tracks=None, utterance=None, repeat=None)

	Start playback.

	Parameters

	
	tracks – track uri or list of track uri’s
Each track can be added as a tuple with (uri, mime)
to give a hint of the mime type to the system

	utterance – forward utterance for further processing by the
audio service.

	repeat – if the playback should be looped

	
prev()

	Change to previous track.

	
queue(tracks=None)

	Queue up a track to playing playlist.

	Parameters

	tracks – track uri or list of track uri’s
Each track can be added as a tuple with (uri, mime)
to give a hint of the mime type to the system

	
resume()

	Resume paused playback.

	
seek(seconds=1)

	Seek X seconds.

	Parameters

	seconds (int) – number of seconds to seek, if negative rewind

	
seek_backward(seconds=1)

	Rewind X seconds

	Parameters

	seconds (int) – number of seconds to rewind

	
seek_forward(seconds=1)

	Skip ahead X seconds.

	Parameters

	seconds (int) – number of seconds to skip

	
stop()

	Stop the track.

	
track_info()

	Request information of current playing track.

	Returns

	Dict with track info.

intent_handler decorator

	
mycroft.intent_handler(intent_parser)

	Decorator for adding a method as an intent handler.

intent_file_handler decorator

	
mycroft.intent_file_handler(intent_file)

	Decorator for adding a method as an intent file handler.

This decorator is deprecated, use intent_handler for the same effect.

adds_context decorator

	
mycroft.adds_context(context, words='')

	Decorator adding context to the Adapt context manager.

	Parameters

	
	context (str) – context Keyword to insert

	words (str) – optional string content of Keyword

removes_context decorator

	
mycroft.removes_context(context)

	Decorator removing context from the Adapt context manager.

	Parameters

	context (str) – Context keyword to remove

mycroft.audio

	mycroft.audio

mycroft.filesystem

	mycroft.filesystem

mycroft.util

	mycroft.util package
	LOG

	play_wav

	play_mp3

	play_ogg

	resolve_resource_file

	get_cache_directory

	mycroft.util.log

	mycroft.util.parse

Parsing functions for extracting data from natural speech.

	mycroft.util.format

Formatting functions for producing natural speech from common datatypes such as numbers, dates and times.

	mycroft.util.time

A collection of functions for handling local, system and global times.

mycroft.audio

	
mycroft.audio.is_speaking()

	Determine if Text to Speech is occurring

	Returns

	True while still speaking

	Return type

	bool

	
mycroft.audio.stop_speaking()

	Stop mycroft speech.

TODO: Skills should only be able to stop speech they’ve initiated

	
mycroft.audio.wait_while_speaking()

	Pause as long as Text to Speech is still happening

Pause while Text to Speech is still happening. This always pauses
briefly to ensure that any preceeding request to speak has time to
begin.

mycroft.filesystem

	
class mycroft.filesystem.FileSystemAccess(path)

	A class for providing access to the mycroft FS sandbox.

Intended to be attached to skills at initialization time to provide a
skill-specific namespace.

	
exists(filename)

	Check if file exists in the namespace.

	Parameters

	filename (str) – a path relative to the namespace.
subdirs not currently supported.

	Returns

	True if file exists, else False.

	Return type

	bool

	
open(filename, mode)

	Open a file in the provided namespace.

Get a handle to a file (with the provided mode) within the
skill-specific namespace.

	Parameters

	
	filename (str) – a path relative to the namespace.
subdirs not currently supported.

	mode (str) – a file handle mode

	Returns

	an open file handle.

	
path

	Member value containing the root path of the namespace

mycroft.util package

The mycroft.util package includes functions for common operations such as
playing audio files, parsting and creating natural text as well as many
components used internally in Mycroft such as cache directory lookup,
path resolution. etc.

Below _some_ of the functions that are of interest to skill developers are
listed.

LOG

	
mycroft.util.LOG(name)

	Custom logger class that acts like logging.Logger
The logger name is automatically generated by the module of the caller

	Usage:
	>>> LOG.debug('My message: %s', debug_str)
13:12:43.673 - :<module>:1 - DEBUG - My message: hi
>>> LOG('custom_name').debug('Another message')
13:13:10.462 - custom_name - DEBUG - Another message

play_wav

	
mycroft.util.play_wav(uri, environment=None)

	Play a wav-file.

This will use the application specified in the mycroft config
and play the uri passed as argument. The function will return directly
and play the file in the background.

	Parameters

	
	uri – uri to play

	environment (dict) – optional environment for the subprocess call

Returns: subprocess.Popen object or None if operation failed

play_mp3

	
mycroft.util.play_mp3(uri, environment=None)

	Play a mp3-file.

This will use the application specified in the mycroft config
and play the uri passed as argument. The function will return directly
and play the file in the background.

	Parameters

	
	uri – uri to play

	environment (dict) – optional environment for the subprocess call

Returns: subprocess.Popen object or None if operation failed

play_ogg

	
mycroft.util.play_ogg(uri, environment=None)

	Play an ogg-file.

This will use the application specified in the mycroft config
and play the uri passed as argument. The function will return directly
and play the file in the background.

	Parameters

	
	uri – uri to play

	environment (dict) – optional environment for the subprocess call

Returns: subprocess.Popen object, or None if operation failed

resolve_resource_file

	
mycroft.util.resolve_resource_file(res_name)

	Convert a resource into an absolute filename.

Resource names are in the form: ‘filename.ext’
or ‘path/filename.ext’

The system wil look for $XDG_DATA_DIRS/mycroft/res_name first
(defaults to ~/.local/share/mycroft/res_name), and if not found will
look at /opt/mycroft/res_name, then finally it will look for res_name
in the ‘mycroft/res’ folder of the source code package.

Example

With mycroft running as the user ‘bob’, if you called
resolve_resource_file('snd/beep.wav')
it would return either:
‘$XDG_DATA_DIRS/mycroft/beep.wav’,
‘/home/bob/.mycroft/snd/beep.wav’ or
‘/opt/mycroft/snd/beep.wav’ or
‘…/mycroft/res/snd/beep.wav’
where the ‘…’ is replaced by the path
where the package has been installed.

	Parameters

	res_name (str) – a resource path/name

	Returns

	(str) path to resource or None if no resource found

get_cache_directory

	
mycroft.util.get_cache_directory(domain=None)

	Get a directory for caching data.

This directory can be used to hold temporary caches of data to
speed up performance. This directory will likely be part of a
small RAM disk and may be cleared at any time. So code that
uses these cached files must be able to fallback and regenerate
the file.

	Parameters

	domain (str) – The cache domain. Basically just a subdirectory.

	Returns

	(str) a path to the directory where you can cache data

mycroft.util.log

Mycroft Logging module.

This module provides the LOG pseudo function quickly creating a logger instance
for use.

The default log level of the logger created here can ONLY be set in
/etc/mycroft/mycroft.conf or ~/.config/mycroft/mycroft.conf

The default log level can also be programatically be changed by setting the
LOG.level parameter.

	
class mycroft.util.log.LOG(name)

	Custom logger class that acts like logging.Logger
The logger name is automatically generated by the module of the caller

	Usage:
	>>> LOG.debug('My message: %s', debug_str)
13:12:43.673 - :<module>:1 - DEBUG - My message: hi
>>> LOG('custom_name').debug('Another message')
13:13:10.462 - custom_name - DEBUG - Another message

	
classmethod debug(*args, **kwargs)

	Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

	
classmethod error(*args, **kwargs)

	Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.error(“Houston, we have a %s”, “major problem”, exc_info=1)

	
classmethod exception(*args, **kwargs)

	Convenience method for logging an ERROR with exception information.

	
classmethod info(*args, **kwargs)

	Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

	
classmethod init()

	Initializes the class, sets the default log level and creates
the required handlers.

	
classmethod warning(*args, **kwargs)

	Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

	
mycroft.util.log.getLogger(name='MYCROFT')

	Depreciated. Use LOG instead

mycroft.util.parse

The mycroft.util.parse module provides various parsing functions for things
like numbers, times, durations etc. It’s intention is to convert naturally
expressed concepts into standard computer readable formats. Doing this also
enables localization.

It also provides some useful associated functions like basic fuzzy matching.

The module uses lingua-franca (https://github.com/mycroftai/lingua-franca) to
do most of the actual parsing. However methods may be wrapped specifically for
use in Mycroft Skills.

	
mycroft.util.parse.extract_datetime(text, anchorDate='DEFAULT', lang=None, default_time=None)

	Extracts date and time information from a sentence.

Parses many of the common ways that humans express dates and times,
including relative dates like “5 days from today”, “tomorrow’, and
“Tuesday”.

Vague terminology are given arbitrary values, like:

	morning = 8 AM

	afternoon = 3 PM

	evening = 7 PM

If a time isn’t supplied or implied, the function defaults to 12 AM

	Parameters

	
	text (str) – the text to be interpreted

	anchorDate (datetime, optional) – the date to be used for
relative dating (for example, what does “tomorrow” mean?).
Defaults to the current local date/time.

	lang (str) – the BCP-47 code for the language to use, None uses default

	default_time (datetime.time) – time to use if none was found in
the input string.

	Returns

	
	‘datetime’ is the extracted date
	as a datetime object in the user’s local timezone.
‘leftover_string’ is the original phrase with all date and time
related keywords stripped out. See examples for further
clarification
Returns ‘None’ if no date or time related text is found.

	Return type

	[datetime, str]

Examples

>>> extract_datetime(
... "What is the weather like the day after tomorrow?",
... datetime(2017, 06, 30, 00, 00)
...)
[datetime.datetime(2017, 7, 2, 0, 0), 'what is weather like']
>>> extract_datetime(
... "Set up an appointment 2 weeks from Sunday at 5 pm",
... datetime(2016, 02, 19, 00, 00)
...)
[datetime.datetime(2016, 3, 6, 17, 0), 'set up appointment']
>>> extract_datetime(
... "Set up an appointment",
... datetime(2016, 02, 19, 00, 00)
...)
None

mycroft.util.format

The mycroft.util.format module provides various formatting functions for
things like numbers, times, etc.

The focus of these formatting functions is to create human digestible content
either as speech or in display form. It is also enables localization.

The module uses lingua-franca (https://github.com/mycroftai/lingua-franca) to
do most of the actual parsing. However methods may be wrapped specifically for
use in Mycroft Skills.

	
mycroft.util.format.nice_duration(duration, lang=None, speech=True, use_years=True, clock=False, resolution=TimeResolution.SECONDS)

	Convert duration in seconds to a nice spoken timespan

	Accepts:
	time, in seconds, or datetime.timedelta

Examples

duration = 60 -> “1:00” or “one minute”
duration = 163 -> “2:43” or “two minutes forty three seconds”
duration = timedelta(seconds=120) -> “2:00” or “two minutes”

	Parameters

	
	duration (int/float/datetime.timedelta) –

	lang (str, optional) – a BCP-47 language code, None for default

	speech (bool, opt) – format output for speech (True) or display (False)

	use_years (bool, opt) – rtn years and days if True, total days if False

	clock (bool, opt) – always format output like digital clock (see below)

	resolution (mycroft.util.format.TimeResolution, optional) – lower bound

	mycroft.util.format.TimeResolution values:
	TimeResolution.YEARS
TimeResolution.DAYS
TimeResolution.HOURS
TimeResolution.MINUTES
TimeResolution.SECONDS
TimeResolution.MILLISECONDS

NOTE: nice_duration will not produce milliseconds
unless that resolution is passed.

NOTE: clock will produce digital clock-like output appropriate to
resolution. Has no effect on resolutions DAYS or YEARS. Only
applies to displayed output.

	Returns

	timespan as a string

	Return type

	str

	
mycroft.util.format.nice_duration_dt(date1, date2, lang=None, speech=True, use_years=True, clock=False, resolution=TimeResolution.SECONDS)

	Convert duration between datetimes to a nice spoken timespan

	Accepts:
	2 x datetime.datetime

Examples

date1 = datetime(2019, 3, 12),
date2 = datetime(2019, 1, 1) -> “seventy days”

date1 = datetime(2019, 12, 25, 20, 30),
date2 = datetime(2019, 10, 31, 8, 00),
speech = False -> “55d 12:30”

	Parameters

	
	date1 (datetime.datetime) –

	date2 (datetime.datetime) –

	lang (str, optional) – a BCP-47 language code, None for default

	speech (bool, opt) – format output for speech (True) or display (False)

	use_years (bool, opt) – rtn years and days if True, total days if False

	clock (bool, opt) – always format output like digital clock (see below)

	resolution (mycroft.util.format.TimeResolution, optional) – lower bound

	mycroft.util.format.TimeResolution values:
	TimeResolution.YEARS
TimeResolution.DAYS
TimeResolution.HOURS
TimeResolution.MINUTES
TimeResolution.SECONDS

NOTE: nice_duration_dt() cannot do TimeResolution.MILLISECONDS
This will silently fall back on TimeResolution.SECONDS

NOTE: clock will produce digital clock-like output appropriate to
resolution. Has no effect on resolutions DAYS or YEARS. Only
applies to displayed output.

	Returns

	timespan as a string

	Return type

	str

mycroft.util.time

Time utils for getting and converting datetime objects for the Mycroft
system. This time is based on the setting in the Mycroft config and may or
may not match the system locale.

	
mycroft.util.time.default_timezone()

	Get the default timezone

Based on user location settings location.timezone.code or
the default system value if no setting exists.

	Returns

	Definition of the default timezone

	Return type

	(datetime.tzinfo)

	
mycroft.util.time.now_local(tz=None)

	Retrieve the current time

	Parameters

	tz (datetime.tzinfo, optional) – Timezone, default to user’s settings

	Returns

	The current time

	Return type

	(datetime)

	
mycroft.util.time.now_utc()

	Retrieve the current time in UTC

	Returns

	The current time in Universal Time, aka GMT

	Return type

	(datetime)

	
mycroft.util.time.to_local(dt)

	Convert a datetime to the user’s local timezone

	Parameters

	dt (datetime) – A datetime (if no timezone, defaults to UTC)

	Returns

	time converted to the local timezone

	Return type

	(datetime)

	
mycroft.util.time.to_system(dt)

	Convert a datetime to the system’s local timezone

	Parameters

	dt (datetime) – A datetime (if no timezone, assumed to be UTC)

	Returns

	time converted to the operation system’s timezone

	Return type

	(datetime)

	
mycroft.util.time.to_utc(dt)

	Convert a datetime with timezone info to a UTC datetime

	Parameters

	dt (datetime) – A datetime (presumably in some local zone)

	Returns

	time converted to UTC

	Return type

	(datetime)

Mycroft plugins

Mycroft is extendable by plugins. These plugins can add support for new Speech To Text engines, Text To Speech engines, wake word engines and add new audio playback options.

TTS - Base for TTS plugins

	
class mycroft.tts.TTS(lang, config, validator, audio_ext='wav', phonetic_spelling=True, ssml_tags=None)

	TTS abstract class to be implemented by all TTS engines.

It aggregates the minimum required parameters and exposes
execute(sentence) and validate_ssml(sentence) functions.

	Parameters

	
	lang (str) –

	config (dict) – Configuration for this specific tts engine

	validator (TTSValidator) – Used to verify proper installation

	phonetic_spelling (bool) – Whether to spell certain words phonetically

	ssml_tags (list) – Supported ssml properties. Ex. [‘speak’, ‘prosody’]

	
begin_audio()

	Helper function for child classes to call in execute().

	
clear_cache()

	Remove all cached files.

	
end_audio(listen=False)

	Helper function for child classes to call in execute().

Sends the recognizer_loop:audio_output_end message (indicating
that speaking is done for the moment) as well as trigger listening
if it has been requested. It also checks if cache directory needs
cleaning to free up disk space.

	Parameters

	listen (bool) – indication if listening trigger should be sent.

	
execute(sentence, ident=None, listen=False)

	Convert sentence to speech, preprocessing out unsupported ssml

The method caches results if possible using the hash of the
sentence.

	Parameters

	
	sentence – (str) Sentence to be spoken

	ident – (str) Id reference to current interaction

	listen – (bool) True if listen should be triggered at the end
of the utterance.

	
get_tts(sentence, wav_file)

	Abstract method that a tts implementation needs to implement.

Should get data from tts.

	Parameters

	
	sentence (str) – Sentence to synthesize

	wav_file (str) – output file

	Returns

	(wav_file, phoneme)

	Return type

	tuple

	
init(bus)

	Performs intial setup of TTS object.

	Parameters

	bus – Mycroft messagebus connection

	
load_phonemes(key)

	Load phonemes from cache file.

	Parameters

	key (str) – Key identifying phoneme cache

	
load_spellings()

	Load phonetic spellings of words as dictionary.

	
modify_tag(tag)

	Override to modify each supported ssml tag.

	Parameters

	tag (str) – SSML tag to check and possibly transform.

	
static remove_ssml(text)

	Removes SSML tags from a string.

	Parameters

	text (str) – input string

	Returns

	input string stripped from tags.

	Return type

	str

	
save_phonemes(key, phonemes)

	Cache phonemes

	Parameters

	
	key (str) – Hash key for the sentence

	phonemes (str) – phoneme string to save

	
validate_ssml(utterance)

	Check if engine supports ssml, if not remove all tags.

Remove unsupported / invalid tags

	Parameters

	utterance (str) – Sentence to validate

	Returns

	validated_sentence

	Return type

	str

	
viseme(phonemes)

	Create visemes from phonemes.

May be implemented to convert TTS phonemes into Mycroft mouth
visuals.

	Parameters

	phonemes (str) – String with phoneme data

	Returns

	visemes

	Return type

	list

STT - base for STT plugins

	
class mycroft.stt.STT

	STT Base class, all STT backends derive from this one.

	
abstract execute(audio, language=None)

	Implementation of STT functionallity.

This method needs to be implemented by the derived class to implement
the specific STT engine connection.

The method gets passed audio and optionally a language code and is
expected to return a text string.

	Parameters

	
	audio (AudioData) – audio recorded by mycroft.

	language (str) – optional language code

	Returns

	parsed text

	Return type

	str

	
static init_language(config_core)

	Helper method to get language code from Mycroft config.

	
class mycroft.stt.StreamingSTT

	ABC class for threaded streaming STT implemenations.

	
abstract create_streaming_thread()

	Create thread for parsing audio chunks.

This method should be implemented by the derived class to return an
instance derived from StreamThread to handle the audio stream and
send it to the STT engine.

	Returns

	Thread to handle audio data.

	Return type

	StreamThread

	
execute(audio, language=None)

	End the parsing thread and collect data.

	
stream_data(data)

	Receiver of audio data.

	Parameters

	data (bytes) – raw audio data.

	
stream_start(language=None)

	Indicate start of new audio stream.

This creates a new thread for handling the incomming audio stream as
it’s collected by Mycroft.

	Parameters

	language (str) – optional language code for the new stream.

	
stream_stop()

	Indicate that the audio stream has ended.

This will tear down the processing thread and collect the result

	Returns

	parsed text

	Return type

	str

	
class mycroft.stt.StreamThread(queue, language)

	ABC class to be used with StreamingSTT class implementations.

This class reads audio chunks from a queue and sends it to a parsing
STT engine.

	Parameters

	
	queue (Queue) – Input Queue

	language (str) – language code for the current language.

	
abstract handle_audio_stream(audio, language)

	Handling of audio stream.

Needs to be implemented by derived class to process audio data and
optionally update self.text with the current hypothesis.

	Argumens:
	audio (bytes): raw audio data.
language (str): language code for the current session.

	
run()

	Thread entry point.

HotWordEngine - Base for Hotword engine plugins

	
class mycroft.client.speech.hotword_factory.HotWordEngine(key_phrase='hey mycroft', config=None, lang='en-us')

	Hotword/Wakeword base class to be implemented by all wake word plugins.

	Parameters

	
	key_phrase (str) – string representation of the wake word

	config (dict) – Configuration block for the specific wake word

	lang (str) – language code (BCP-47)

	
found_wake_word(frame_data)

	Check if wake word has been found.

Checks if the wake word has been found. Should reset any internal
tracking of the wake word state.

	Parameters

	frame_data (binary data) – Deprecated. Audio data for large chunk
of audio to be processed. This should not
be used to detect audio data instead
use update() to incrementaly update audio

	Returns

	True if a wake word was detected, else False

	Return type

	bool

	
stop()

	Perform any actions needed to shut down the wake word engine.

This may include things such as unloading data or shutdown
external processess.

	
update(chunk)

	Updates the hotword engine with new audio data.

The engine should process the data and update internal trigger state.

	Parameters

	chunk (bytes) – Chunk of audio data to process

AudioBackend - Base for audioservice backend plugins

	
class mycroft.audio.services.AudioBackend(config, bus)

	Base class for all audio backend implementations.

	Parameters

	
	config (dict) – configuration dict for the instance

	bus (MessageBusClient) – Mycroft messagebus emitter

	
abstract add_list(tracks)

	Add tracks to backend’s playlist.

	Parameters

	tracks (list) – list of tracks.

	
abstract clear_list()

	Clear playlist.

	
lower_volume()

	Lower volume.

This method is used to implement audio ducking. It will be called when
Mycroft is listening or speaking to make sure the media playing isn’t
interfering.

	
next()

	Skip to next track in playlist.

	
pause()

	Pause playback.

Stops playback but may be resumed at the exact position the pause
occured.

	
abstract play(repeat=False)

	Start playback.

Starts playing the first track in the playlist and will contiune
until all tracks have been played.

	Parameters

	repeat (bool) – Repeat playlist, defaults to False

	
previous()

	Skip to previous track in playlist.

	
restore_volume()

	Restore normal volume.

Called when to restore the playback volume to previous level after
Mycroft has lowered it using lower_volume().

	
resume()

	Resume paused playback.

Resumes playback after being paused.

	
seek_backward(seconds=1)

	Rewind X seconds.

	Parameters

	seconds (int) – number of seconds to seek, if negative jump forward.

	
seek_forward(seconds=1)

	Skip X seconds.

	Parameters

	seconds (int) – number of seconds to seek, if negative rewind

	
set_track_start_callback(callback_func)

	Register callback on track start.

This method should be called as each track in a playlist is started.

	
shutdown()

	Perform clean shutdown.

Implements any audio backend specific shutdown procedures.

	
abstract stop()

	Stop playback.

Stops the current playback.

	Returns

	True if playback was stopped, otherwise False

	Return type

	bool

	
abstract supported_uris()

	List of supported uri types.

	Returns

	Supported uri’s

	Return type

	list

	
track_info()

	Get info about current playing track.

	Returns

	Track info containing atleast the keys artist and album.

	Return type

	dict

	
class mycroft.audio.services.RemoteAudioBackend(config, bus)

	Base class for remote audio backends.

RemoteAudioBackends will always be checked after the normal
AudioBackends to make playback start locally by default.

An example of a RemoteAudioBackend would be things like Chromecasts,
mopidy servers, etc.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mycroft	

 	
 	
 mycroft.audio	

 	
 	
 mycroft.util.format	

 	
 	
 mycroft.util.log	

 	
 	
 mycroft.util.parse	

 	
 	
 mycroft.util.time	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	acknowledge() (mycroft.MycroftSkill method)

 	add_event() (mycroft.MycroftSkill method)

 	add_list() (mycroft.audio.services.AudioBackend method)

 	adds_context() (in module mycroft)

 	
 	ask_selection() (mycroft.MycroftSkill method)

 	ask_yesno() (mycroft.MycroftSkill method)

 	AudioBackend (class in mycroft.audio.services)

 	AudioService (class in mycroft.skills.audioservice)

 	available_backends() (mycroft.skills.audioservice.AudioService method)

B

 	
 	begin_audio() (mycroft.tts.TTS method)

 	bind() (mycroft.MycroftSkill method)

 	(mycroft.skills.common_iot_skill.CommonIoTSkill method)

 	(mycroft.skills.common_play_skill.CommonPlaySkill method)

 	(mycroft.skills.common_query_skill.CommonQuerySkill method)

C

 	
 	can_handle() (mycroft.skills.common_iot_skill.CommonIoTSkill method)

 	cancel_all_repeating_events() (mycroft.MycroftSkill method)

 	cancel_scheduled_event() (mycroft.MycroftSkill method)

 	clear_cache() (mycroft.tts.TTS method)

 	clear_list() (mycroft.audio.services.AudioBackend method)

 	CommonIoTSkill (class in mycroft.skills.common_iot_skill)

 	CommonPlaySkill (class in mycroft.skills.common_play_skill)

 	CommonQuerySkill (class in mycroft.skills.common_query_skill)

 	config_core (mycroft.MycroftSkill attribute)

 	
 	converse() (mycroft.MycroftSkill method)

 	CPS_extend_timeout() (mycroft.skills.common_play_skill.CommonPlaySkill method)

 	CPS_match_query_phrase() (mycroft.skills.common_play_skill.CommonPlaySkill method)

 	CPS_play() (mycroft.skills.common_play_skill.CommonPlaySkill method)

 	CPS_send_status() (mycroft.skills.common_play_skill.CommonPlaySkill method)

 	CPS_send_tracklist() (mycroft.skills.common_play_skill.CommonPlaySkill method)

 	CPS_start() (mycroft.skills.common_play_skill.CommonPlaySkill method)

 	CQS_action() (mycroft.skills.common_query_skill.CommonQuerySkill method)

 	CQS_match_query_phrase() (mycroft.skills.common_query_skill.CommonQuerySkill method)

 	create_streaming_thread() (mycroft.stt.StreamingSTT method)

D

 	
 	debug() (mycroft.util.log.LOG class method)

 	default_shutdown() (mycroft.FallbackSkill method)

 	(mycroft.MycroftSkill method)

 	
 	default_timezone() (in module mycroft.util.time)

 	disable_intent() (mycroft.MycroftSkill method)

E

 	
 	enable_intent() (mycroft.MycroftSkill method)

 	end_audio() (mycroft.tts.TTS method)

 	error() (mycroft.util.log.LOG class method)

 	exception() (mycroft.util.log.LOG class method)

 	
 	execute() (mycroft.stt.StreamingSTT method)

 	(mycroft.stt.STT method)

 	(mycroft.tts.TTS method)

 	exists() (mycroft.filesystem.FileSystemAccess method)

 	extract_datetime() (in module mycroft.util.parse)

F

 	
 	FallbackSkill (class in mycroft)

 	file_system (mycroft.MycroftSkill attribute)

 	
 	FileSystemAccess (class in mycroft.filesystem)

 	find_resource() (mycroft.MycroftSkill method)

 	found_wake_word() (mycroft.client.speech.hotword_factory.HotWordEngine method)

G

 	
 	get_cache_directory() (in module mycroft.util)

 	get_entities() (mycroft.skills.common_iot_skill.CommonIoTSkill method)

 	get_intro_message() (mycroft.MycroftSkill method)

 	get_response() (mycroft.MycroftSkill method)

 	
 	get_scenes() (mycroft.skills.common_iot_skill.CommonIoTSkill method)

 	get_scheduled_event_status() (mycroft.MycroftSkill method)

 	get_tts() (mycroft.tts.TTS method)

 	getLogger() (in module mycroft.util.log)

H

 	
 	handle_audio_stream() (mycroft.stt.StreamThread method)

 	handle_disable_intent() (mycroft.MycroftSkill method)

 	handle_enable_intent() (mycroft.MycroftSkill method)

 	
 	handle_remove_cross_context() (mycroft.MycroftSkill method)

 	handle_set_cross_context() (mycroft.MycroftSkill method)

 	handle_settings_change() (mycroft.MycroftSkill method)

 	HotWordEngine (class in mycroft.client.speech.hotword_factory)

I

 	
 	info() (mycroft.util.log.LOG class method)

 	init() (mycroft.tts.TTS method)

 	(mycroft.util.log.LOG class method)

 	init_language() (mycroft.stt.STT static method)

 	
 	initialize() (mycroft.MycroftSkill method)

 	intent_file_handler() (in module mycroft)

 	intent_handler() (in module mycroft)

 	is_playing (mycroft.skills.audioservice.AudioService property)

 	is_speaking() (in module mycroft.audio)

L

 	
 	lang (mycroft.MycroftSkill property)

 	load_data_files() (mycroft.MycroftSkill method)

 	load_phonemes() (mycroft.tts.TTS method)

 	load_regex_files() (mycroft.MycroftSkill method)

 	load_spellings() (mycroft.tts.TTS method)

 	load_vocab_files() (mycroft.MycroftSkill method)

 	
 	location (mycroft.MycroftSkill property)

 	location_pretty (mycroft.MycroftSkill property)

 	location_timezone (mycroft.MycroftSkill property)

 	LOG (class in mycroft.util.log)

 	log (mycroft.MycroftSkill attribute)

 	LOG() (in module mycroft.util)

 	lower_volume() (mycroft.audio.services.AudioBackend method)

M

 	
 	make_active() (mycroft.MycroftSkill method)

 	make_intent_failure_handler() (mycroft.FallbackSkill class method)

 	modify_tag() (mycroft.tts.TTS method)

 	
 module

 	mycroft.audio

 	mycroft.util.format

 	mycroft.util.log

 	mycroft.util.parse

 	mycroft.util.time

 	
 mycroft.audio

 	module

 	
 	
 mycroft.util.format

 	module

 	
 mycroft.util.log

 	module

 	
 mycroft.util.parse

 	module

 	
 mycroft.util.time

 	module

 	MycroftSkill (class in mycroft)

N

 	
 	next() (mycroft.audio.services.AudioBackend method)

 	(mycroft.skills.audioservice.AudioService method)

 	nice_duration() (in module mycroft.util.format)

 	
 	nice_duration_dt() (in module mycroft.util.format)

 	now_local() (in module mycroft.util.time)

 	now_utc() (in module mycroft.util.time)

O

 	
 	open() (mycroft.filesystem.FileSystemAccess method)

P

 	
 	path (mycroft.filesystem.FileSystemAccess attribute)

 	pause() (mycroft.audio.services.AudioBackend method)

 	(mycroft.skills.audioservice.AudioService method)

 	play() (mycroft.audio.services.AudioBackend method)

 	(mycroft.skills.audioservice.AudioService method)

 	
 	play_mp3() (in module mycroft.util)

 	play_ogg() (in module mycroft.util)

 	play_wav() (in module mycroft.util)

 	prev() (mycroft.skills.audioservice.AudioService method)

 	previous() (mycroft.audio.services.AudioBackend method)

Q

 	
 	queue() (mycroft.skills.audioservice.AudioService method)

R

 	
 	register_entities_and_scenes() (mycroft.skills.common_iot_skill.CommonIoTSkill method)

 	register_entity_file() (mycroft.MycroftSkill method)

 	register_fallback() (mycroft.FallbackSkill method)

 	register_intent() (mycroft.MycroftSkill method)

 	register_intent_file() (mycroft.MycroftSkill method)

 	register_regex() (mycroft.MycroftSkill method)

 	register_resting_screen() (mycroft.MycroftSkill method)

 	register_vocabulary() (mycroft.MycroftSkill method)

 	reload_skill (mycroft.MycroftSkill attribute)

 	RemoteAudioBackend (class in mycroft.audio.services)

 	remove_context() (mycroft.MycroftSkill method)

 	remove_cross_skill_context() (mycroft.MycroftSkill method)

 	remove_event() (mycroft.MycroftSkill method)

 	
 	remove_fallback() (mycroft.FallbackSkill class method)

 	remove_instance_handlers() (mycroft.FallbackSkill method)

 	remove_noise() (mycroft.skills.common_query_skill.CommonQuerySkill method)

 	remove_ssml() (mycroft.tts.TTS static method)

 	removes_context() (in module mycroft)

 	report_metric() (mycroft.MycroftSkill method)

 	resolve_resource_file() (in module mycroft.util)

 	restore_volume() (mycroft.audio.services.AudioBackend method)

 	resume() (mycroft.audio.services.AudioBackend method)

 	(mycroft.skills.audioservice.AudioService method)

 	root_dir (mycroft.MycroftSkill attribute)

 	run() (mycroft.stt.StreamThread method)

 	run_request() (mycroft.skills.common_iot_skill.CommonIoTSkill method)

S

 	
 	save_phonemes() (mycroft.tts.TTS method)

 	schedule_event() (mycroft.MycroftSkill method)

 	schedule_repeating_event() (mycroft.MycroftSkill method)

 	seek() (mycroft.skills.audioservice.AudioService method)

 	seek_backward() (mycroft.audio.services.AudioBackend method)

 	(mycroft.skills.audioservice.AudioService method)

 	seek_forward() (mycroft.audio.services.AudioBackend method)

 	(mycroft.skills.audioservice.AudioService method)

 	send_email() (mycroft.MycroftSkill method)

 	set_context() (mycroft.MycroftSkill method)

 	set_cross_skill_context() (mycroft.MycroftSkill method)

 	set_track_start_callback() (mycroft.audio.services.AudioBackend method)

 	settings_change_callback (mycroft.MycroftSkill attribute)

 	shutdown() (mycroft.audio.services.AudioBackend method)

 	(mycroft.MycroftSkill method)

 	speak() (mycroft.MycroftSkill method)

 	(mycroft.skills.common_iot_skill.CommonIoTSkill method)

 	
 	speak_dialog() (mycroft.MycroftSkill method)

 	stop() (mycroft.audio.services.AudioBackend method)

 	(mycroft.client.speech.hotword_factory.HotWordEngine method)

 	(mycroft.MycroftSkill method)

 	(mycroft.skills.audioservice.AudioService method)

 	(mycroft.skills.common_play_skill.CommonPlaySkill method)

 	stop_speaking() (in module mycroft.audio)

 	stream_data() (mycroft.stt.StreamingSTT method)

 	stream_start() (mycroft.stt.StreamingSTT method)

 	stream_stop() (mycroft.stt.StreamingSTT method)

 	StreamingSTT (class in mycroft.stt)

 	StreamThread (class in mycroft.stt)

 	STT (class in mycroft.stt)

 	supported_request_version (mycroft.skills.common_iot_skill.CommonIoTSkill property)

 	supported_uris() (mycroft.audio.services.AudioBackend method)

T

 	
 	to_local() (in module mycroft.util.time)

 	to_system() (in module mycroft.util.time)

 	to_utc() (in module mycroft.util.time)

 	track_info() (mycroft.audio.services.AudioBackend method)

 	(mycroft.skills.audioservice.AudioService method)

 	
 	translate() (mycroft.MycroftSkill method)

 	translate_list() (mycroft.MycroftSkill method)

 	translate_namedvalues() (mycroft.MycroftSkill method)

 	translate_template() (mycroft.MycroftSkill method)

 	TTS (class in mycroft.tts)

U

 	
 	update() (mycroft.client.speech.hotword_factory.HotWordEngine method)

 	
 	update_scheduled_event() (mycroft.MycroftSkill method)

V

 	
 	validate_ssml() (mycroft.tts.TTS method)

 	
 	viseme() (mycroft.tts.TTS method)

 	voc_match() (mycroft.MycroftSkill method)

W

 	
 	wait_while_speaking() (in module mycroft.audio)

 	
 	warning() (mycroft.util.log.LOG class method)

 nav.xhtml

 Table of Contents

 		
 Mycroft-core technical documentation

 		
 mycroft package

 		
 mycroft.skills

 		
 MycroftSkill class - Base class for all Mycroft skills

 		
 CommonIoTSkill class

 		
 CommonPlaySkill class

 		
 CommonQuerySkill class

 		
 FallbackSkill class

 		
 AudioService class

 		
 intent_handler decorator

 		
 intent_file_handler decorator

 		
 adds_context decorator

 		
 removes_context decorator

 		
 mycroft.audio

 		
 mycroft.audio

 		
 mycroft.filesystem

 		
 mycroft.filesystem

 		
 mycroft.util

 		
 mycroft.util package

 		
 LOG

 		
 play_wav

 		
 play_mp3

 		
 play_ogg

 		
 resolve_resource_file

 		
 get_cache_directory

 		
 mycroft.util.log

 		
 mycroft.util.parse

 		
 mycroft.util.format

 		
 mycroft.util.time

 		
 Mycroft plugins

 		
 TTS - Base for TTS plugins

 		
 STT - base for STT plugins

 		
 HotWordEngine - Base for Hotword engine plugins

 		
 AudioBackend - Base for audioservice backend plugins

_static/plus.png

_static/file.png

_static/minus.png

